PHOTOLYSIS OF SO₂ IN THE PRESENCE OF FOREIGN GASES. V. SENSITIZED PHOSPHORESCENCE OF BIACETYL

ANGELO M. FATTA,* ECKART MATHIAS, JULIAN HEICKLEN, LEONARD STOCKBURGER, III and SILVIA BRASLAVSKY**

Department of Chemistry and Center for Air Environment Studies, The Pennsylvania State University, University Park, Pa. 16802 (U.S.A.)

(Received January 26, 1973; in revised form March 26, 1973

SUMMARY

SO₂ was irradiated in the presence of biacetyl at 3020 Å and 25°C. The SO₂-sensitized phosphorescence of biacetyl was monitored both in the absence and presence of N₂, CO, CO₂, N₂O, H₂O, and thiophene. The results show that two triplet states of SO₂ must be involved to explain the yields of biacetyl phosphorescence. Neither of these states has the properties of the emitting triplet state of SO₂ (³B₁ or ³SO₂). In particular, neither of the two SO₂ triplets is quenched by N₂, CO, CO₂, or N₂O. One of the states, SO₂**, is quenched by H₂O, but not by thiophene, whereas the reverse is true for the other state, SO₂[±]. The emitting ³SO₂ state is quenched by all six gases, and very markedly by thiophene.

The state SO_2^{\neq} is rapidly quenched by biacetyl and accounts for the sensitized phosphorescence at low biacetyl pressure. At higher biacetyl pressures (~ 1 Torr), its phosphorescence is enhanced because of quenching of SO_2^{**} . The SO_2^{**} state has the same properties as the triplet state responsible for chemical reaction between photoexcited SO_2 and CO.

INTRODUCTION

The primary photophysical processes which occur when SO_2 is excited into the absorption band centered at about 3000 Å have been studied extensively. The details of the primary process have been examined through lifetime measurements of emission as well as fluorescence and phosphorescence yields during steady-state exposure¹⁻¹³. It is now well established that the phosphorescent state, ${}^{3}SO_{2}$, is the same state that is produced by irradiation at longer wavelengths into the

^{*} Present address: Buffalo Crime Lab., Police Headquarters, Buffalo, N. Y. 14202 (U.S.A.).

^{**} Present address: Universidad Nacional de Rio Cuarto, Departamento de Física y Química, Sarmiento 725, Rio Cuarto, Córdoba (Argentina).

forbidden band, *i.e.* the ${}^{3}B_{1}$ state ${}^{14-16}$. This state can undergo first-order decay processes or be quenched by collision.

$$^{3}\mathrm{SO}_{2} \longrightarrow \mathrm{SO}_{2} (+h\nu)$$
 (1)

$${}^{3}\mathrm{SO}_{2} + \mathrm{SO}_{2} \rightarrow 2\mathrm{SO}_{2} \tag{2}$$

$$^{3}\mathrm{SO}_{2} + \mathrm{M} \rightarrow \mathrm{SO}_{2} + \mathrm{M}$$
 (3)

where M is any other gas present in the system. The steady-state concentration for ${}^{3}SO_{2}$ is then given by:

$$[{}^{3}\mathrm{SO}_{2}] = \alpha I_{a}/(k_{1} + k_{2}[\mathrm{SO}_{2}] + k_{3}[\mathrm{M}])$$
 (I)

where I_a is the absorbed intensity, and α is the fraction of I_a that produces ${}^{3}SO_{2}$. For direct irradiation into the long wavelength forbidden band, $\alpha = 1$. However, for radiation ~ 3000 Å (into the allowed band), $\alpha < 1$ and, in general, may be a complex function of the gas pressures.

Wampler et al.¹² flash photolyzed SO₂ in the presence of other gases with a 2662 Å laser pulse, measured the ${}^{3}SO_{2}$ triplet emission intensity, extrapolated it to zero time, and thus measured α . They found α to be dependent on the ratio $[M]/[SO_{2}]$ for $M = O_{2}$, N₂, Ar, CO, and CO₂. On the other hand, Stockburger et al.¹³ examined the steady-state emission with incident irradiation at 3130 Å, and found that $[{}^{3}SO_{2}]$ obeyed simple Stern–Volmer kinetics for several quenching gases in conformance with Mettee's earlier results⁵. The quenching gases included N₂, CO, and CO₂. Thus they concluded that α must be insensitive to the ratio $[M]/[SO_{2}]$. These seemingly contradictory results may both be correct, since at 2662 and 3130 Å the precursor state to ${}^{3}SO_{2}$ may be different. In fact, the photochemical results from our laboratory require such an interpretation¹⁷.

Photochemical studies in the presence of foreign gases have been undertaken in a number of laboratories. Dainton and $Ivin^{18,19}$ have studied the photolysis of SO_2 in the presence of several paraffins and olefins. Timmons²⁰ has re-examined the photolysis of SO_2 in the presence of alkanes and has also added CO. Allen and coworkers^{21,22} have looked at the SO_2-O_2 system. In our laboratory, extensive studies have been made with C_2F_4 , CO, and thiophene as added gases^{17,23,24}.

None of the photochemical studies can be explained by a mechanism involving only the two emitting excited states of SO_2 . Thus Cehelnik *et al.*^{17,23} postulated two new non-emitting states, a singlet, designated SO_2^* , and a triplet, designated SO_2^{**} , to account for the majority of the photochemical products. Two new states were needed since the triplet quenchers NO and biacetyl could reduce the extent of photochemical reaction, but not eliminate reaction completely.

Recently, Wampler *et al.*²⁵ have re-examined the formation of CO_2 in 3130 Å irradiated mixtures of SO_2 and CO. They concluded that an excess triplet yield is necessary to explain the data, but they felt that this excess triplet could still be 3SO_2 rather than SO_2^{**} . We feel their interpretation to be unsound for reasons stated in the preceding paper¹⁷. Nevertheless, it is desirable to obtain

spectroscopic evidence for the postulated non-emitting states. Since they do not emit, direct emission studies are not possible. However, one of the states, SO_2^{**} , is readily quenched by biacetyl and perhaps can sensitize the phosphorescence of biacetyl.

The technique of using triplet SO_2 to sensitize biacetyl phosphorescence has been used extensively in Calvert's laboratory at relatively low pressures of SO_2 , biacetyl, and quenching gas, $M^{7,8,26,27}$. These data were all interpreted in terms of sensitization by only one state of SO_2 , the emitting triplet, 3SO_2 .

We decided to extend the biacetyl-SO₂ studies to higher pressures of biacetyl and quenching gases in order to see if SO₂** can sensitize the biacetyl emission. These studies were performed at 3020 Å and 25°C and are reported here. At about the time our studies were undertaken, similar studies were made in Calvert's laboratory^{25,28}. Most of their studies used incident radiation at 2875 Å and with CO, N₂, and CO₂ as quenching gases²⁸. Again they found that an excess triplet yield of SO₂ was required to explain the data. They attribute this yield to ${}^{3}SO_{2}$ exclusively. Our data reported here go to higher pressures of both biacetyl and quenching gas and include N₂, CO, CO₂, N₂O, H₂O, and thiophene as quenching gases. Where the data from the two laboratories overlap, the agreement is good. The purpose of the explained solely by ${}^{3}SO_{2}$, or whether other triplet states of SO₂ are required.

EXPERIMENTAL

All gases were supplied by Matheson Gas Products. Sulfur dioxide (anhydrous) was degassed twice at -196° C and then distilled at -95° C. The fraction volatile at -95° C, but condensable at -130° C, was collected and placed in a dark storage bulb. Immediately before use, SO₂ was degassed again at -130° C.

Nitrogen (research grade) was used without further purification. Manufacturer's analysis showed < 1 ppm oxygen impurity.

Since all grades of commercially available carbon monoxide contain significant amounts of oxygen impurity (200 ppm in Air Products research grade CO), the following purification procedure was developed. Several atmospheres of CO (chemically pure) were condensed in a cooled $(-196^{\circ}C)$ U trap filled with glass wool. The pressure was quickly reduced to 30 Torr. The residual CO was then allowed to pass into a 3 l storage bulb which contained 5 Torr of biacetyl. The mixture was photolyzed overnight with a medium pressure mercury arc lamp. During this time all of the oxygen was chemically removed. Immediately before use the gas was passed slowly through a cold $(-196^{\circ}C)$ U trap filled with glass wool to remove unreacted biacetyl and other condensable products.

The CO₂ (bone dry) was degassed repeatedly at -196° C, and used without further purification. The N₂O was passed through an Ascarite-packed tube and then thoroughly degassed at -196° C.

Biacetyl (J. T. Baker Co., suitable for photosensitizer use grade) was used without further purification after having been degassed first at -196° C and then at -95° C. Samples were stable if kept in a light-tight storage bulb. Immediately before use, the biacetyl was degassed again and then distilled into the cell at the lowest possible temperature needed to achieve the desired pressure.

Thiophene (Sharpless Chemical Inc.) was purified by gas chromatography using a 20 ft long column packed with 10% tricresyl phosphate on Chromosorb G (N.A.W.). The column temperature was 100°C, with a helium flow rate of 60 cm³/min. The thiophene was then distilled into the vacuum line, through a tube packed tightly with Ascarite and Drierite, and repeatedly degassed first at -196° C and finally at -130° C.

De-ionized water was degassed repeatedly at -95° C, and used without further purification.

All experiments were carried out in a mercury-free high-vacuum line fitted with Teflon stopcocks. Pressures above 3 Torr were measured with Wallace and Tiernan absolute pressure indicators while pressures below 3 Torr were achieved by volume expansion. The geometry of the optical quartz cell is shown in Fig. 1. The total cell volume was $\sim 30 \text{ cm}^3$ with the fluorescent volume being $\sim 1.5 \text{ cm}^3$.

The SO₂-biacetyl-foreign gas mixtures were irradiated at 3020 Å. Biacetyl phosphorescence intensity readings were taken directly from the instrument meter (in μ A) of a Farrand Mark I spectrofluorometer. Slits were used which gave 50 Å dispersion in both the exciting and analyzing monochromators. The intensity of the biacetyl phosphorescence band at 5100 Å was divided by the intensity of the second-order reflection of the incident beam. This eliminated errors due to fluctuations in the incident beam intensity. At low biacetyl pressure, the absorption by

Fig. 1. Optical quartz cell used for the SO₂-sensitized phosphorescence of biacetyl.

biacetyl was negligible. However, for biacetyl pressures > 5 Torr, the observed emitted intensity at 5100 Å contained a contribution from the directly absorbing biacetyl molecule. At each pressure this contribution was determined in the absence of SO₂ and subtracted from the observed ratio with SO₂ present to obtain the intensity due to energy transfer only. The correction was always less than 10%.

RESULTS

All our studies were carried out at 25° C, with incident radiation at 3020 Å. This wavelength was used because it corresponds to the minimum in the biacetyl absorption and minimizes complications due to biacetyl absorption when SO₂-biacetyl mixtures are irradiated.

Experiments were carried out in which mixtures of SO_2 and biacetyl were irradiated at 3020 Å, and the biacetyl phosphorescence at 5100 Å was monitored. This phosphorescence will give a measure of triplet SO_2 if the triplet biacetyl is removed only by emission and/or first-order internal conversion steps. In order to check this requirement the following experiments were done: biacetyl was irradiated with 4358 Å radiation to produce low-lying vibrational levels of the triplet, ³B₀, which emits the phosphorescence. Then SO_2 , or a quenching gas, or mixtures of them, were added to test their effect on the emission intensity. If 1 Torr of biacetyl was irradiated, the addition of 3 Torr of SO_2 , N₂, or CO enhanced the

Fig. 2. Log-log plots of the relative biacetyl phosphorescence yield vs. biacetyl pressure both in the absence and presence of 20, 150, or 550 Torr of N₂ when sensitized by 3 Torr of SO₂ excited with 3020 Å radiation at 25°C. The lower two curves have been displaced downward by a factor of 10 for clarity. The lines represent theoretically computed values using the rate constant ratios listed in Table 1.

Fig. 3. Log-log plots of the relative biacetyl phosphorescence yield vs. biacetyl pressure both in the absence and presence of 350 Torr of CO when sensitized by 3 Torr of SO₂ excited with 3020 Å radiation at 25°C. The lines represent theoretically computed values using the rate constant ratios listed in Table 1.

emission by about 5%. Further additions of N₂ up to 700 Torr or CO up to 350 Torr caused no further change. However, if trace amounts of O₂ were present, then the emission was markedly quenched. Because of the difficulty in purifying the CO, we never used more than 350 Torr. The small enhancement in the emission yield when a second gas is added results from the elimination of the wall quenching of triplet biacetyl which has been shown to occur at pressures below 1 Torr²⁹. To check this point, another set of experiments was carried out with 0.1 Torr of biacetyl. Now the addition of 3 Torr of SO₂ enhanced the emission by 80%. Further additions of SO₂ up to 20 Torr had no further effect. Consequently, in our studies, which were all done with 3 or 15 Torr of SO₂ present, the wall reaction is unimportant, and the addition of the other gases used does not quench its own phosphorescence when excitation is at 4358 Å.

A further complication with 3020 Å radiation results from the direct absorption of biacetyl itself to produce its phosphorescence. Therefore, for all of the SO₂-sensitized experiments, blanks were run in which the SO₂ was omitted (but the quenching gas was present). The residual emission yield was completely negligible for biacetyl pressures < 5 Torr. However, above this pressure, the yield was measurable and could account for up to 10% of the total yield at 17 Torr of biacetyl. The yields reported here are all corrected for this residual contribution.

Fig. 4. Plots of the relative biacetyl phosphorescence yield vs. N₂ pressure at various biacetyl pressures when sensitized by 3 Torr of SO₂ excited with 3020 Å radiation at 25° C. The lines represent theoretically computed values using the rate constant values listed in Table 1.

Our results give only relative emission yields, Q. The proportionality factor was different at 3 and 15 Torr of SO₂, because of the different fraction of radiation absorbed at the two wavelengths. Since at 15 Torr of SO₂, a significant proportion of the radiation is absorbed, the effective fluorescence volume in the cell moves forward and the geometry is altered. The emission yields reported, Q, with 15 Torr of SO₂ are adjusted arbitrarily by a scale factor to be concordant with those at 3 Torr of SO₂.

With 3 Torr of SO₂, a series of runs was made with biacetyl pressures from 0.007 to 17 Torr. The biacetyl phosphorescence yields, Q, are shown in Fig. 2. The yield rises with biacetyl pressure, pauses slightly at 0.2-0.4 Torr, then continues to rise until it levels off above 6 Torr. The same trend is observed if 20, 150, or

Fig. 5. Plots of the relative biacetyl phosphorescence yield vs. N₂ pressure at various biacetyl pressures when sensitized by 15 Torr of SO₂ excited with 3020 Å radiation at 25°C. The lines represent theoretically computed values using the rate constant ratios listed in Table 1.

550 Torr of N_2 are also present. Similar results are obtained with 350 Torr of CO added as shown in Fig. 3.

To further study the effect of added gases, series of runs were done at constant biacetyl and SO_2 pressures, in which a quenching gas was added in increments to the same mixture. In this way any error in the SO_2 or biacetyl pressures or in the instrument readings will be the same in any series, and relative effects can be seen in detail. The results are shown in Figs. 4–10.

Figure 4 shows the effect of added N_2 . The addition of N_2 to mixtures of 3 Torr of SO₂ and 0.010 Torr biacetyl reduces the yield to about 36% of its initial value. It is absolutely clear that the emission is not quenched to zero. (The ratio of signal to background reading was about 100.) Furthermore the half-quenching

Fig. 6. Plots of the relative biacetyl phosphorescence yield vs. CO pressure at various biacetyl pressures when sensitized by 3 Torr of SO₂ excited with 3020 Å radiation at 25°C. The lines represent theoretically computed values using the rate constant ratios listed in Table 1.

pressure is about 20 Torr of N_2 . At higher biacetyl pressures, the quenching by N_2 is less pronounced, but the N_2 quenching half-pressure is about the same; and at high N_2 pressures, Q tends to rise.

Similar results are obtained with 15 Torr of SO₂ (Fig. 5), or with CO, CO₂, and N₂O as quenching gases at 3 Torr of SO₂ (Figs. 6–8). With H₂O or thiophene as quenching gases, only about 1 Torr is needed to half-quench (Figs. 9 and 10). The emission then remains constant for any biacetyl pressure as the quenching gas is raised to its vapor pressure.

DISCUSSION

Let us first consider the possibility that the sensitization of biacetyl can be explained by ${}^{3}SO_{2}$. Then the most general mechanism consists of:

$SO_2 + hv$	$\rightarrow {}^{3}\mathrm{SO}_{2}$	rate $= aI_a$		
³ SO ₂	\rightarrow SO ₂ (+ $h\nu$)		(1)	
$^{3}SO_{2} + SO$	$_2 \rightarrow 2SO_2$		(2)	
$^{3}SO_{2} + M$	$\rightarrow SO_2 + M$		(3)	

Fig. 7. Plots of the relative biacetyl phosphorescence yield vs. CO_2 pressure at various biacetyl pressures when sensitized by 3 Torr of SO_2 excited with 3020 Å radiation at 25°C. The lines represent theoretically computed values using the rate constant ratios listed in Table 1.

$${}^{3}\mathrm{SO}_{2} + \mathrm{B} \quad \rightarrow \; {}^{3}\mathrm{B}_{n} \tag{4a}$$

$$\rightarrow {}^{3}B_{0}$$
 (4b)

 ${}^{3}B_{n} \rightarrow Decomposition$ (5)

$${}^{3}B_{n} + M \rightarrow {}^{3}B_{0} + M$$
 (6)

$$^{3}B_{0} \rightarrow B + h\nu$$
 (7)

where B stands for biacetyl, and ${}^{3}B_{n}$ represents high vibrational levels of triplet biacetyl (> 80 kcal/mol) which are capable of decomposition, whereas ${}^{3}B_{0}$ represents low vibrational levels which are incapable of dissociation³⁰. For pressures of SO₂ of 3 Torr or greater, reaction (1) is negligible^{3,4}, so the expression for biacetyl emission due to ${}^{3}SO_{2}$ sensitization, ${}^{3}Q$, is:

³Q =
$$\frac{[B] \alpha}{(k_2[SO_2] + k_3[M] + k_4[B])} \left(k_{4b} + \frac{k_{4a} k_6[M]}{k_5 + k_6[M]} \right)$$
(II)

Fig. 8. Plots of the relative biacetyl phosphorescence yield vs. N₂O pressure at various biacetyl pressures when sensitized by 3 Torr of SO₂ excited with 3020 Å radiation at 25°C. The lines represent theoretically computed values using the rate constant ratios listed in Table 1.

In the analysis from Calvert's laboratory, reaction (6) has been ignored, but we include it for generality. If it occurs at all, it can only be important at high pressures of M. The rate constant ratio k_3/k_2 has been measured in three laboratories for several quenchers and the results are all in good agreement¹³. The only direct measurement of k_4/k_2 (*i.e.* not by biacetyl sensitization) was made by Sidebottom *et al.*³¹ and they found a value of 360. Again let us assume that the observation of Wampler *et al.*¹² with 2662 Å incident radiation is applicable here and that α is a function of [M]/[SO₂]. Then at a high constant value of [M], for [SO₂] = 3 Torr, and for biacetyl pressures between 0.010 and 0.37 Torr, both α and the last term in parentheses in eqn. (II) are constant. The increase in ³Q as [B] rises from 0.010 to 0.37 Torr can be computed from the known values of k_3/k_2 and k_4/k_2 . For both N₂ and CO, $k_3/k_2 = 0.25^{13}$. The computed increases for 150 Torr N₂, 550 Torr N₂, and 350 Torr of CO are factors of 9.4, 19.5 and 15.6, respectively, whereas the

Fig. 9. Plots of the relative biacetyl phosphorescence yield vs. H_2O pressure at various biacetyl pressures when sensitized by 3 Torr of SO₂ excited with 3020 Å radiation at 25°C. The lines represent theoretically computed values using the rate constant ratios listed in Table 1.

observed values (from Figs. 2 and 3) are 2.7, 7.1 and 4.7, respectively. In order to fit the data it is necessary that k_3 be zero, a conclusion clearly incompatible with previous investigations.

Of course α may be independent of [M] as found with incident radiation at 3130 Å by Stockburger *et al.*¹³. Then consider the situation in which [B] is held constant, but in which [M] varies from 0 to some value sufficiently small so that reaction (6) is unimportant (*i.e.* < 100 Torr). Then the half-quenching pressure for Q must increase with [B], *e.g.* the half-quenching pressure of N₂ must be greater at 0.37 Torr of biacetyl than at 0.010 Torr of biacetyl. Just a cursory examination of Figs. 4–10 shows that this is not so for any M. Again the impossible conclusion is reached that k_3 must be zero.

The inescapable conclusion from the above arguments is that ${}^{3}SO_{2}$ is not the principal state sensitizing biacetyl emission. As further proof, consider the results with H₂O as a quenching gas (Fig. 9). H₂O has been found to be a good quencher of ${}^{3}SO_{2}$, being more efficient than SO₂ itself¹³. Yet even the addition of 16.6 Torr of H₂O only reduces the emission yield 15% with as little as 0.030 Torr of biacetyl present. Under these conditions over 70% of the ${}^{3}SO_{2}$ is removed

Fig. 10. Semilog plots of the relative biacetyl phosphorescence yield vs. thiophene pressure at various biacetyl pressures when sensitized by 3 Torr of SO₂ excited with 3020 Å radiation at 25°C. The lines represent theoretically computed values using the rate constant ratios listed in Table 1.

by H_2O^{13} . Consequently, at low biacetyl pressures no more than 15% of the emission can come from 3SO_2 . Since this value is within the experimental uncertainty of our data, we discard further consideration of 3SO_2 , even though it undoubtedly makes a minor contribution to the sensitization of biacetyl.

From the above arguments it is clear that the SO₂ triplet which sensitizes biacetyl emission is not quenched by N₂ or CO (or by extension, CO₂ or N₂O). Such a state is the one proposed by Cehelnik *et al.*^{17,23} to explain the photochemical production of CO₂ in the presence of CO, *i.e.* SO₂**. The most general mechanism for this state consistent with the photochemical results in the presence of CO and N₂ is:

$$SO_2 + h\nu \rightarrow SO_2^{**}$$
 $rate = \beta I_a$

$$SO_2^{**} \rightarrow SO_2$$
 (8)

Then the sensitized emission from this state, Q**, is:

$$Q^{**} = \frac{\beta[B]}{(k_8 + k_9 \ [B])} \left(k_{9b} + \frac{k_{9a} k_6 \ [M]}{k_5 + k_6 \ [M]} \right)$$
(III)

(10)

For this expression to fit the data at low [B] and at 3 Torr of SO₂, it is necessary that $k_9/k_8 = 120$ Torr⁻¹ and that β be a function of [M]. In order to fit the photochemical results, Cehelnik *et al.*^{17,23} found $k_9/k_8 = 1$ Torr⁻¹ and β to be independent of [M]. Consequently SO₂** is not the important sensitizing state at low biacetyl pressures (though as we shall show it is important at higher biacetyl pressures). Attempts to fit the data at low biacetyl pressure by a combination of ³SO₂ and SO₂** also fail for the same reasons as those already outlined.

In order to fit the data at low biacetyl pressure, a triplet state of SO₂ is needed which gives rise to the same general expression as eqn. (III), but with β dependent on [M], and $k_9/k_8 \sim 120$ Torr⁻¹. It is necessary to postulate a third triplet state of SO₂, which we call SO₂^{\neq}. There appears to be no way to escape this conclusion and still fit the data. The processes involving this state would be:

$$SO_2 + h\nu \rightarrow SO_2^{\neq}$$
 rate = γI_a
 $SO_2^{\neq} \rightarrow SO_2$

----->

$$SO_2^{\neq} + SO_2 \rightarrow 2SO_2 \tag{11}$$

$$\mathrm{SO}_2^{\neq} + \mathrm{B} \rightarrow \mathrm{SO}_2 + {}^3\mathrm{B}_n$$
 (12a)

$$SO_2 + {}^3B_0$$
 (12b)

This mechanism leads to the following expression for the intensity, Q^{\neq} , of biacetyl emission sensitized by SO_2^{\neq} :

$$Q^{\neq} = \frac{\gamma[B]}{(k_{10} + k_{11}[SO_2] + k_{12}[B])} \left(k_{12b} + \frac{k_{12a}k_6[M]}{k_5 + k_6[M]}\right)$$
(IV)

 γ is the fraction of I_a which produces SO_2^{\neq} . It is a function of the various gas pressures. If SO_2^{\neq} is produced only from the state initially absorbing the radiation, then the general form for γ is:

$$\gamma = \frac{C_1 C_4 + C_5 [SO_2] + C_2 C_6 [B] + C_3 C_7 [M]}{C_1 + [SO_2] + C_2 [B] + C_3 [M]}$$
(V)

where C_1 , C_2 , and C_3 give the relative importance of removal of the precursor absorbing state by first-order processes, by quenching by biacetyl, and by quenching by M, respectively, compared to quenching by SO₂. The constants C_4 , C_5 , C_6 , and C_7 give the fraction of the time that SO_2^{\neq} is produced from first-order processes and from quenching by SO₂, biacetyl, and M, respectively. Of course SO_2^{\neq} may be produced from more than one precursor state, and then γ would be much more complex. The coefficients, C_1-C_7 , would represent more or less average values. For simplicity we consider γ to have the form given by eqn. (V).

The question now remains if the total emission from biacetyl, Q, can be explained by sensitization of biacetyl solely by SO_2^{\neq} . For high values of M (*e.g.* 550 Torr of N₂), Q^{\neq} should rise with the biacetyl pressure to a constant value and then level off. Further increases in biacetyl pressure should have no further effect.

However, the data in Fig. 2 clearly show a second plateau which is half reached at about 1 Torr of biacetyl. Possibly at biacetyl pressures > 1 Torr, γ is somewhat influenced by [B], and this accounts for the increase at high biacetyl pressures. If so, then the formation of the second plateau should occur at lower biacetyl pressures when [M] is lower. The four curves in Fig. 2, as well as the two curves in Fig. 3, show that this is not so. The second plateau, which also occurs with CO₂ and N₂O as the quenching gas, can be explained by sensitization of biacetyl by SO₂**.

Further evidence that the second plateau at high biacetyl pressure is due to a second triplet state comes from the results with added H₂O. The addition of H₂O rapidly decreases Q at first, but additions beyond 10 Torr have no effect. Q at H₂O pressures > 10 Torr, Q_∞, is plotted against [B] in Fig. 11. It is clear that the second plateau has vanished, but the results below ~ 0.3 Torr of biacetyl are hardly affected. H₂O is known to quench ${}^{3}SO_{2}{}^{13}$, and presumably it also quenches SO₂** (or whatever state is responsible for the second plateau).

$$SO_2^{**} + H_2O \rightarrow SO_2 + H_2O \tag{13}$$

Additional evidence for the importance of states other than ${}^{3}SO_{2}$ or SO_{2}^{\neq} sensitizing biacetyl emission is given with added thiophene. The addition of thiophene (Th) rapidly reduces Q to a constant value for pressures of thiophene in

Fig. 11. Log-log plots of the relative biacetyl phosphorescence yield vs. biacetyl pressure in the presence of > 10 Torr of H₂O or > 40 Torr of thiophene when sensitized by 3 Torr of SO₂ excited with 3020 Å radiation at 25°C.

excess of 10 Torr. At low biacetyl pressures, 90% of Q is removed by adding > 10 Torr of thiophene. Clearly both ${}^{3}SO_{2}$ and SO_{2}^{\neq} are quenched.

The values of Q at high thiophene pressures, Q_{∞} , are plotted against [B] in Fig. 11. Q continues to rise as [B] increases. The fact that the plot does not level off indicates at least two states are sensitizing biacetyl emission. One is undoubtedly SO_2^{**} , and the other (or others) is excited thiophene produced from quenching excited $SO_2^{\neq 24}$. Presumably a reaction of importance is:

$$\mathrm{SO}_2^{\neq} + \mathrm{Th} \rightarrow \mathrm{SO}_2 + \mathrm{Th}^*$$
 (14)

Now let us summarize our interpretations. There are three triplet states of SO₂, which we have designated ${}^{3}SO_{2}$, SO₂**, and SO₂^{\neq}. The first state is the emitting triplet. It contributes no more than 15% of Q. Since our experimental data are not more accurate than ~ 15%, we ignore ${}^{3}SO_{2}$ for simplicity. The state SO₂^{\neq} is primarily responsible for Q at low [B], but SO₂** makes a contribution at high [B].

So far these arguments have been rigorous, but semi-quantitative or qualitative. It is now desirable to see if the data for $Q = Q^{\neq} + Q^{**}$ can be fitted quantitatively. To do this a number of simplifications are introduced into eqns. (III), (IV), and (V), since the data can be fitted with fewer rate constant ratios than contained in those equations.

The data can be fitted with $k_5 \gg k_6[M]$ for all M. Then for Q^{**}:

$$Q^{**} \approx \frac{(\beta k_{9b}/k_8)[B]}{(1+k_9[B]/k_8+k_{13}[H_2O]/k_8)} \left(1+k_{9a}k_6[M]/k_{9b}k_5\right)$$
(VI)

There are four rate constant parameters for Q^{**} . The first is the scale factor $\beta k_{9b}/k_8$. The ratio k_9/k_8 is known²³ to be 1.0 Torr⁻¹, and this value is used. The ratio k_{13}/k_8 is the relative quenching constant for SO₂**, and is applicable only with H₂O as the quenching gas. The fourth parameter is $k_{9a}k_6/k_{9b}k_5$ and it can be different for each quenching gas. It is needed to explain the enhancement in Q at high pressures of quenching gas.

For Q^{\not} the expression is: (VII)

$$Q^{\not} = \frac{\gamma(k_{12b}/k_{12})[B]}{(k_{10}/k_{12} + k_{11}[SO_2]/k_{12} + [B] + k_{14}[Th]/k_{12})} \left(1 + k_6 k_{12a}[M]/k_5 k_{12b}\right)$$

This expression contains five rate constant parameters which play similar functions to those for Q^{**}. One of these is specific for thiophene, and plays no role with the other quenching gases. Of course, γ as given by eqn. (V) also contains seven parameters which need to be fitted. Actually much fewer are needed. For simplicity we have assumed that C_1 and C_4 are zero, $C_2 = 1$, and $C_5 = C_6$. Then the scale parameter for Q^{\neq} becomes C_5k_{12b}/k_{12} . The two parameters C_7/C_5 and C_3 are used to fit the extent of the decrease in Q as M is first added, and the half-pressure for the decrease, respectively.

The data have been computer fitted, and the values of the parameters are listed in Table 1. Theoretical curves were computed with these parameters and these theoretical curves have been drawn in Figs. 2–10. The data in Figs. 2 and 3 are reasonably fitted by the curves. In Fig. 4, five of the six sets of runs are well fitted. The set with 1.0 Torr of biacetyl gives the theoretical curve about 20% below the data points, though the curve shape is well reproduced. The discrepancy may reflect experimental error, as mixtures of 1 Torr of biacetyl and 3 Torr of SO₂ were the most difficult to prepare accurately. In Fig. 5, four of the sets of runs are well fitted, but the two intermediate sets show some deviation. Again at 1.0 Torr biacetyl, the theoretical curve is about 20% below the data points, though the curve shape is well reproduced.

Figure 6 is satisfactory, but Fig. 7–9 show deviations at \sim 7 Torr of biacetyl. This is undoubtedly experimental error rather than an inadequacy in the mechanism, since the experimental values at \sim 7 Torr of biacetyl in the absence of M are lower than for the identical points in Figs. 4 and 6.

In Fig. 10, the fit is not good. It is clear that the theoretical lines are too low at low biacetyl pressures and too high at high biacetyl pressures. With thiophene the mechanism must be more complex than outlined here. Excited states of thiophene are produced, and these may also sensitize biacetyl emission.

Further tests of the reasonableness of the mechanism come from an examination of the quenching constants in Table 1. C_3 is about the same for N₂ and CO. It is somewhat larger and the same for CO₂ and N₂O. In all four cases it is < 1 indicating that these gases are less efficient quenchers than SO₂. On the other hand $C_3 = 4.0$ for H₂O showing its large quenching efficiency. The trend for these molecules is as expected. Thiophene is such an efficient quencher of SO₂[≠] that neither C₃ nor C₇ could be measured in this case. The same trend is shown for k_6k_{9a}/k_5k_{9b} , though in this case sufficient pressures of H₂O and thiophene could not be used to measure their efficiencies.

Ratio	Units	N_2	СО	CO 2	N ₂ O	H₂O	Thiophene
$\frac{\beta}{\beta k_{9b}/k_8}$	Torr ⁻¹	0.11	0.11	0.11	0.11	0.11	0.11
k_9/k_8^a	Torr ⁻¹	1.0	1.0	1.0	1.0	1.0	1 .0
k_{13}/k_8	Torr ⁻¹	_	_			1.8	
$k_{6}k_{9a}/k_{5}k_{9b}$	Torr ⁻¹	0.0010	0.0010	0.0023	0.0014		
$C_5 k_{12b}/k_{12}$	None	0.075	0,075	0.075	0.075	0.075	0.075
k_{10}/k_{12}	Torr	0.0049	0.0049	0.0049	0.0049	0.0049	0.0049
k_{11}/k_{12}	None	0.00116	0.00116	0.00116	0.00116	0.00116	0.00116
k_{14}/k_{12}	None	_		_		-	2.8
k6k12a/k5k12b	None	0.0008	0.0008	0.0003	0		
C_3	None	0.20	0.20	0.30	0.30	4.0	
<i>C</i> ₇	None	0.30	0.30	0.45	0.35	0.85	-

RATE CONSTANT RATIOS USED TO FIT DATA WITH VARIOUS QUENCHING GASES

* From Cehelnik et al.23.

TABLE 1

It would be expected that k_6k_{12a}/k_5k_{12b} should show the same trend with different quenching gases as the other quenching constants. For H₂O and thiophene sufficient pressures were not reached to measure this ratio. In fact, with CO the same is true. We just used 0.0008 because it was the same as for N₂. For N₂O the value is 0, and the data for CO₂ are fitted about equally well with 0 as with 0.003. Only with N₂ is a non-zero value needed to get the best fit. However, if 0 is used for k_6k_{12a}/k_5k_{12b} , a reasonably good fit is still achieved. Probably k_{12a} is essentially zero.

The data require three excited triplet states of SO₂ when absorption is into the band centered at 2900 Å. The lowest lying is the emitting state, ${}^{3}SO_{2}$, and it has been definitely identified as ${}^{3}B_{1}$ symmetry³². The other two states must be ${}^{3}A_{2}$ and ${}^{3}B_{2}$. Probably ${}^{3}B_{2}$ lies at higher energy than ${}^{3}A_{2}$, since the corresponding singlets are in that order. Of the two states which sensitize biacetyl emission SO₂** probably lies higher than SO₂^{\neq} since $k_{9a}/k_{9b} > k_{12a}/k_{12b}$. If this supposition is correct, then SO₂** is probably the ${}^{3}B_{2}$ state and SO₂^{\neq} the ${}^{3}A_{2}$ state.

The possibility that biacetyl emission was sensitized by the excited singlet states of SO₂ was omitted in the above analysis. The justification for this is that Cehelnik *et al.*²³ found that biacetyl did not quench the chemically active singlet states with 3130 Å incident radiation. Furthermore, the addition of excess quenching gases completely removes the emitting singlet state of SO₂¹³.

ACKNOWLEDGEMENTS

The authors are deeply indebted to Professor Jack Calvert and his research group for a number of extremely helpful discussions as well as advance access to their results. They also appreciate the important contributions made by E. Cehelnik in unravelling the mechanism. This work was supported by the Office of Air Programs of the Environmental Protection Agency under Grant No. R800874, for which we are grateful.

REFERENCES

- 1 K. F. Greenough and A. B. F. Duncan, J. Am. Chem. Soc., 83 (1961) 555.
- 2 R. B. Caton and A. B. F. Duncan, J. Am. Chem. Soc., 90 (1968) 1945.
- 3 S. J. Strickler and D. B. Howell, J. Chem. Phys., 49 (1968) 1947.
- 4 H. D. Mettee, J. Chem. Phys., 49 (1968) 1784.
- 5 H. D. Mettee, J. Am. Chem. Soc., 90 (1968) 2972.
- 6 H. D. Mettee, J. Phys. Chem., 73 (1969) 1071.
- 7 T. N. Rao, S. S. Collier and J. G. Calvert, J. Am. Chem. Soc., 91 (1969) 1609.
- 8 T. N. Rao, S. S. Collier and J. G. Calvert, J. Am. Chem. Soc., 91 (1969) 1616.
- 9 T. N. Rao and J. G. Calvert, J. Phys. Chem., 74 (1970) 681.
- 10 K. Otsuka and J. G. Calvert, J. Am. Chem. Soc., 93 (1971) 2581.
- 11 H. W. Sidebottom, K. Otsuka, A. Horowitz, J. G. Calvert, B. R. Rabe and E. K. Damon, Chem. Phys. Lett., 13 (1972) 337.
- 12 F. B. Wampler, J. G. Calvert and E. K. Damon, Int. J. Chem. Kinet., in press (1972).

- 13 L. Stockburger, III, J. Heicklen and S. Braslavsky, J. Photochem., 2 (1973/74) 15.
- 14 S. S. Collier, A. Morikawa, D. H. Slater, J. G. Calvert, G. Reinhardt and E. K. Damon, J. Am. Chem. Soc., 92 (1970) 217.
- 15 H. W. Sidebottom, C. C. Badcock, J. G. Calvert, G. W. Reinhardt, B. R. Rabe and E. K. Damon, J. Am. Chem. Soc., 93 (1971) 2587.
- 16 H. W. Sidebottom, C. C. Badcock, G. E. Jackson, J. G. Calvert, G. W. Reinhardt and E. K. Damon, *Environ. Sci. Technol.*, 6 (1972) 72.
- 17 E. Cehelnik, J. Heicklen, S. Braslavsky, E. Mathias and L. Stockburger, III, J. Photochem., 2 (1973/74) 31.
- 18 F. S. Dainton and K. J. Ivin, Trans. Faraday Soc., 46 (1950) 374.
- 19 F. S. Dainton and K. J. Ivin, Trans. Faraday Soc., 46 (1950) 382.
- 20 R. B. Timmons, Photochem. Photobiol., 12 (1970) 219.
- 21 D. S. Sethi, E. R. Allen and R. D. Cadle, 5th Int. Conf. Photochemistry, Yorktown Heights, N. Y., 1969.
- 22 R. D. McQuigg and E. R. Allen, 9th Informal Conf. Photochemistry, Columbus, Ohio, 1970.
- 23 E. Cehelnik, C. W. Spicer and J. Heicklen, J. Am. Chem. Soc., 93 (1971) 5371.
- 24 S. Braslavsky and J. Heicklen, J. Am. Chem. Soc., 94 (1972) 4864.
- 25 F. B. Wampler, A. Horowitz and J. G. Calvert, J. Am. Chem. Soc., 94 (1972) 5523.
- 26 A. Horowitz and J. G. Calvert, Int. J. Chem. Kinet., 4 (1972) 175.
- 27 A. Horowitz and J. G. Calvert, Int. J. Chem. Kinet., 4 (1972) 191.
- 28 A. Horowitz and J. G. Calvert, Int. J. Chem. Kinet., 5 (1973) 243.
- 29 G. E. Jackson and J. G. Calvert, J. Am. Chem. Soc., 93 (1971) 2593.
- 30 W. A. Noyes, Jr., W. A. Mulac and M. S. Matheson, J. Chem. Phys., 36 (1962) 880.
- 31 H. W. Sidebottom, C. C. Badcock, J. G. Calvert, B. R. Rabe and E. K. Damon, J. Am. Chem. Soc., 93 (1970) 3121.
- 32 J. C. D. Brand, C. di Lauro and V. T. Jones, J. Am. Chem. Soc., 92 (1970) 6095.